메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임성민 (Korea University of Science & Technology) 김진형 (Korea Aerospace Research Institute) 최원섭 (Korea Aerospace Research Institute) 김해동 (Korea University of Science & Technology)
저널정보
한국항공우주학회 한국항공우주학회지 韓國航空宇宙學會誌 第45卷 第9號
발행연도
2017.9
수록면
794 - 806 (13page)
DOI
10.5139/JKSAS.2017.45.9.794

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지속적으로 우주파편이 증가하고 있는 상황에서 국가 우주자산을 안전하게 보호하고 우주개발국으로서 우주환경 보호에 관심을 가지는 것은 중요하다. 우주파편의 급격한 증가를 막기 위한 효과적인 방법 중 하나는 충돌위험이 큰 우주파편들, 그리고 임무가 종료된 폐기위성을 직접 제거해 나가는 것이다. 본 논문에서는 영상기반 우주파편 추적시스템의 안정적인 인식모델을 위해 인공신경망을 적용한 연구에 대해 다루었다. 한국항공우주연구원에서 개발한 지상기반 우주쓰레기 청소위성 테스트베드인 KARICAT을 활용하여 우주환경이 모사된 영상을 획득하였고, 깊이불연속성에 기인한 영상분할 후 각 객체에 대한 구조 및 색상 기반 특징을 부호화한 벡터를 추출하였다. 특징벡터는 3차원 표면적, 점군의 주성분 벡터, 2차원 형상정보, 색상기반 정보로 구성되어있으며, 이 범주를 기반으로 분리한 특징벡터를 입력으로 하는 인공신경망 모델을 설계하였다. 또한 인공신경망의 성능 향상을 위해 입력되는 특징벡터의 범주에 따라 모델을 분할하여 각 모델 별 학습 후 앙상블 기법을 적용하였다. 적용 결과 앙상블 기법에 따른 인식 모델의 성능 향상을 확인하였다.

목차

ABSTRACT
초록
Ⅰ. 서론
Ⅱ. KARICAT 영상 학습데이터
Ⅲ. Neural Network 분류 모델
Ⅳ. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-558-001281550