메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안정호 (강남대학교) 최권택 (강남대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제18권 제3호
발행연도
2017.6
수록면
525 - 534 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
열린 집합 인식 방법론은 테스트 데이터의 클래스를 학습 시에 모두 파악할 수 없는 경우에 대한 인식 방법론이다. 따라서 열린집합 인식 방법론은 분류와 유효성 검증의 절차를 필요로 한다. 이러한 연구는 얼굴 인식 모듈의 상용화를 위해 필수적이지만 지금까지 국내에서 연구 결과들이 거의 발표되지 않았다. 우리는 두 개의 검증 단계를 가지는 열린 집합 얼굴 인식 방법론을 제안한다. 첫 번째 단계에서는 학습 클래스 외에 더미 클래스들을 설정하고 희소표현 기반 분류를 수행한다. 이 때 테스트 데이터가 더미클래스로 분류되면 무효 데이터로 판별하고, 유효한 클래스로 분류되면 다음 유효성 검증 단계로 넘어간다. 두 번째 단계에서 제안하는 네 가지 특징을 추출하고, 확률분포에 기반을 둔 판별함수를 통해 유효성 검증을 수행한다. 우리는 실험을 통해 열린 집합인식 방법론의 시뮬레이션 방법을 제안하였고 제안하는 방법론의 성능을 제시하고, 희소기반 분류 방식에서 널리 사용되는 SCI지표를 이용한 유효성 테스트보다 높은 성능을 보임을 입증할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 배경
Ⅲ. 제안 방법
Ⅳ. 실험
Ⅴ. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001168004