메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sonia Carole Kouayep (Pukyong National University) Kyung-Hyune Rhee (Pukyong National University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2014 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.6 No.1
발행연도
2014.6
수록면
134 - 138 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently blind image forensics which aims to assess the image authenticity has been raised a great awareness in multimedia security. One of the most popular methods among this category is copy-move forgery detection. This paper proposes an enhanced algorithm for detecting such forgeries in digital images. To deploy this approach, firstly, we divide the image into some overlapping blocks and then capture the intensity of the pixels in each block by utilizing the Radon Transform. Secondly to provide the computational efficiency of the Radon domain, we encode the micro-information of image to the Local Binary Pattern as feature vectors. Finally, in matching step, we use the Chi-square histogram-based distance to determine similar or duplicated blocks. The experimental results show that the proposed joint descriptors for extracting features vectors are very effective in accurate detection of copied regions even when these regions have undergone lossy compression. The detection accuracy and performance of our method in comparison to similar works, promising to be efficient even in detection rate.

목차

Abstract
I. INTRODUCTION
II. THE CONCEPT OF RADON BINARY PATTERN (RBP)
III. PROPOSED METHOD
IV. RESULTS AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-000962304