메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김대호 (Sangmyung University) 김종욱 (Sangmyung University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제22권 제7호(통권 제160호)
발행연도
2017.7
수록면
55 - 62 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, there has been an increasing need for the sharing of microdata containing information regarding an individual entity. As microdata usually contains sensitive information on an individual, releasing it directly for public use may violate existing privacy requirements. Thus, to avoid the privacy problems that occur through the release of microdata for public use, extensive studies have been conducted in the area of privacy-preserving data publishing (PPDP). The k-anonymity algorithm, which is the most popular method, guarantees that, for each record, there are at least k-1 other records included in the released data that have the same values for a set of quasi-identifier attributes. Given an original table, the corresponding k-anonymous table is obtained by generalizing each record in the table into an indistinguishable group, called the equivalent class, by replacing the specific values of the quasi-identifier attributes with more general values. However, query processing over the anonymized data is a very challenging task, due to generalized attribute values. In particular, the problem becomes more challenging with an equi-join query (which is the most common type of query in data analysis tasks) over k-anonymous tables, since with the generalized attribute values, it is hard to determine whether two records can be joinable. Thus, to address this challenge, in this paper, we develop a novel scheme that is able to effectively perform an equi-join between k-anonymous tables. The experiment results show that, through the proposed method, significant gains in accuracy over using a naive scheme can be achieved.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Background and Problem Definition
Ⅲ. Computing Join Cardinality with k-Anonymous Tables
Ⅳ. Experiment
Ⅴ. Conclusion and Future Work
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001162835