메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제14권 제8호
발행연도
2013.8
수록면
3,748 - 3,759 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구의 목적은 DINA(deterministic-input, noisy “and” gate)모형에서 최대우도(maximum likelihood: ML), 최대사후확률(maximum a posteriori: MAP), 사후기대(expected a posteriori: EAP)방법들의 분류 정확성이 어느 정도인 가를 알아보는 것이다. 연구 목적을 달성하기 위하여 다양한 모의실험 조건들[인지요소의 수(K= 5, 7), 응시생 능력분 포(고능력, 중간능력, 저능력 집단), 검사 길이(J= 15, 30, 45)]에 따라 모의자료를 생성했다. 응시생 분류 정확성을 평 가하기 위한 준거로 참 인지요소(true ? )와 ML, MAP, EAP방법으로 추정된 인지요소가 어느 정도 일치하는지를 계 산했다. 본 연구의 주요결과를 요약하면 다음과 같다. 첫째, 본 연구에서 설정한 검사 조건에서 ML, MAP방법보다 EAP방법의 정확일치도 평균이 높았다. 둘째, 다른 검사 조건이 동일할 때, 인지요소의 수가 증가하면 ML, MAP, EAP방법 모두에서 정확일치도 평균이 낮아졌다. 셋째, 동일한 검사 길이에서 사전분포로 고능력, 중간능력, 저능력 집단을 각각 가정했을 때 ML, MAP방법보다 EAP방법의 정확일치도 평균이 높았다. 넷째, 동일한 응시생 능력분포에 서 검사 길이가 증가하면 ML, MAP, EAP방법 모두에서 정확일치도 평균이 높아졌다. 인지요소의 수에 따라 응시생 을 정확하게 분류하기 위한 적절한 검사 길이를 보면, 인지요소의 수가 5, 7개이고 이에 대응하는 검사 길이가 각각 30, 45문항일 때 본 연구에서 설정한 높은 분류 정확성 기준에 부합하는 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001127252