메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제13권 제6호
발행연도
2012.6
수록면
2,751 - 2,756 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
위성영상을 이용한 감독분류에서 훈련집단의 선택은 분류정확도에 많은 영향을 미친다. 일반적으로 훈련집단 의 특징이 명확한 순수화소를 선택할 경우 전체 정확도가 높은 반면, 저해상도 영상이거나 식별이 불분명하여 혼합화 소를 선택하면 정확도는 저하된다. 그러나 실제 영상분류를 수행할 때 순수화소만을 훈련집단으로 선택하는 것은 매 우 어렵다. 이에 본 연구에서는 혼합화소를 훈련집단으로 선택하였을 경우 적합한 분류기법을 제시하고자 하였다. 이 를 위해 소수의 순수화소를 훈련집단으로 선정하여 분류정확도를 산출하고 같은 수의 혼합화소를 이용한 분류결과와 정확도를 비교하였다. 연구 결과, 혼합화소를 사용한 분류기법들 중 SVM의 정확도가 가장 높았으며, 순수화소를 이 용한 분류결과와도 가장 작은 차이를 보였다. 따라서 훈련집단으로 혼합화소를 선택할 가능성이 높은 건물 및 녹지 혼합지역에서는 SVM을 이용한 영상분류가 가장 적합할 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001113009