메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이진숙 (Chungnam National University) 정찬웅 (Konyang National University) 박성주 (Chungnam National University)
저널정보
한국조명·전기설비학회 조명·전기설비학회논문지 조명·전기설비학회논문지 제31권 제7호
발행연도
2017.7
수록면
1 - 14 (14page)
DOI
10.5207/JIEIE.2017.31.7.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The system lighting integrated with IoT(Internet of Things) technology was preferentially applied in office environment, and people are expecting the system lighting to be in harmony with the large area lighting(luminous ceiling) of high uniformity factor as future lighting. The research on this issue should be developed into the user-fiducial compatibility research, and as the premise thereof, required is the examination from various angles like an occupant’s behavior, emotional satisfaction and age-specific characteristics, etc. This study, targeting the large area lighting office environment, deducted optimum lighting environment by age and behavior. The study results are as follows: 1) In case of the glare and preference, the age-specific difference was found to be insignificant, but to be in a different distribution in case of visibility. The study result indicated that the group in their 40s~60s demanded higher illuminance than the group in their 20s~30s; therefore, it’s necessary to do differential design according to occupants’ age-specific distribution. 2) The optimum scope by behavior was classified by color temperature, but the lighting design standard based on the visual-sensory scale for all behaviors(computer work, reading, writing in general) was found to be 4000K, 700lx. The standard for this was found to be higher than KS illuminance range(public facility reading standard and office general standard), and re-examination of KS illuminance range is required.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 실험 방법
4. 실험 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-565-001025051