메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤소영 (Pukyong National University) 윤성대 (Pukyong National University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제21권 제6호
발행연도
2017.6
수록면
1,183 - 1,190 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네트워크와 IT 기술의 발전으로 사용자들은 장소에 구애 받지 않고 어디서든 본인이 원하는 아이템을 검색하고 구매하고 있다. 이에 따라 추천시스템에서 급증하는 데이터로 인한 확장성 문제를 어떻게 해결할 것인가에 대한 연구들이 다양하게 진행되고 있다. 본 논문에서는 Tag 가중치를 적용한 아이템 기반 협업 필터링 기법과 분산 병렬 처리 방식인 MapReduce 방법을 적용한 추천 기법을 제안한다. 제안하는 기법은 속도 향상과 효율성을 위해 전처리 과정에서 아이템을 카테고리별로 분류하고 노드 수에 맞게 그룹지은 후 사용한다. 각 분산 노드에서 4번의 Map-Reduce 단계를 통해 데이터 처리를 진행하는데 사용자에게 더 나은 아이템을 추천하기 위해 유사도 계산에서 아이템 Tag 가중치를 사용한다. 마지막 Reduce 단계를 거쳐 출력된 예측값 중 상위 N개의 아이템을 추천에 사용한다. 실험을 통해 제안 하는 기법이 대량의 데이터를 효율적으로 처리하며 기존의 아이템 기반 기법보다 추천의 적합성도 향상되는 것을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 빅데이터 처리 기법을 적용한 추천기법
Ⅳ. 실험 및 평가
Ⅴ. 결론 및 향후 연구 방향
ACKNOWLEDGMENTS
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-000977554