메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김평 (서울과학기술대학교) 문수빈 (서울과학기술대학교) 조은지 (서울과학기술대학교) 이윤호 (서울과학기술대학교)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제27권 제3호
발행연도
2017.6
수록면
33 - 41 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계 학습(machine-learning) 분야의 분류 알고리즘(classification algorithms)은 의료 진단, 유전자 정보 해석, 스팸 탐지, 얼굴 인식 및 신용 평가와 같은 다양한 응용 서비스에서 사용되고 있다. 이와 같은 응용 서비스에서의 분류 알고리즘은 사용자의 민감한 정보를 포함하는 데이터를 이용하여 학습을 수행하는 경우가 많으며, 분류 결과도 사용자의 프라이버시와 연관된 경우가 많다. 따라서 학습에 필요한 데이터의 소유자, 응용 서비스 사용자, 그리고 서비스 제공자가 서로 다른 보안 도메인에 존재할 경우, 프라이버시 보호 문제가 발생할 수 있다. 본 논문에서는 이러한 문제를 해결하면서도 분류 서비스를 제공할 수 있도록 도와주는 프라이버시 보존 분류 프로토콜(privacy-preserving classification protocol: PPCP) 에 대해 소개한다. 구체적으로 PPCP의 프라이버시 보호 요구사항을 분석하고, 기존의 연구들이 프라이버시 보호를 위해 사용하는 암호학적 기본 도구(cryptographic primitive)들에 대해 소개한다. 최종적으로 그러한 암호학적 기본 도구를 사용하여 설계된 프라이버시 보존 분류 프로토콜에 대한 기존 연구들을 소개하고 분석한다.

목차

요약
Ⅰ. 서론
Ⅱ. 암호기법적 기본 도구
Ⅲ. 프라이버시 보존 분류 방법
Ⅳ. 비교 연구
Ⅴ. 결론
참고문헌

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001021791