메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김정균 (과학기술연합대학원대학교) 이강복 (한국전자통신연구원) 홍상기 (한국전자통신연구원)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제6호 (통권 제475호)
발행연도
2017.6
수록면
100 - 105 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 개인 인증 알고리즘에 관한 것으로 심전도를 이용한 생체 인증 방식은 특정 보정기준점을 추출하는 방법과 그렇지 않은 방법으로 분류할 수 있으며 본 논문에서 제안하는 방법은 특정 보정기준점을 추출하지 않는 방법으로 이산 코사인 변환과 랜덤 포레스트 분류기를 사용하였다. 심전도 신호는 R-Peak 점을 기준으로 단일 심박으로 나누었으며 각 심박의 특징 추출을 위해 이산 코사인 변환을 적용하였다. 이산 코사인 변환 계수는 정보가 저주파에 집중되는 특성이 있으므로 초기 저주파에 해당하는 40까지 값을 특징으로 랜덤 포레스트 분류기를 구성하였다. 랜덤 포레스트는 의사결정 트리의 앙상블 분류기로 결정 트리를 기본으로 하고 있으므로 빠른 학습 속도와 많은 양의 데이터 처리 능력, 다양한 클래스를 분류할 수 있어 실생활에 적용 가능하며 무엇보다 ID의 승인과 거절을 위한 임계값을 분류기 내부에서 조절할 수 있어 오 분류에 강건한 알고리즘을 구성할 수 있다. 18개의 심전도 파일로 구성된 MIT-BIT Normal Sinus Rhythm 데이터베이스를 선정하여 성능을 평가하였으며 99.99%의 심전도 인식률을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 랜덤 포레스트를 이용한 심전도 인증
Ⅲ. 실험 및 결과
Ⅳ. 결론
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0