메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강승호 (동신대학교) 김태희 (동신대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제17권 제5호
발행연도
2017.5
수록면
624 - 632 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상을 이용한 나비 종 자동 인식 기법은 생물종 다양성 연구 및 종의 진화, 발달 과정의 연구를 위한 기초 작업을 돕는 것으로 연구자들의 관심이 높다. 기계학습 기반의 나비 종 인식 시스템은 사용하는 특징추출 방법에 성능이 크게 좌우되는 성질을 가지고 있다. 본 논문은 나비 영상이 가진 색채 강도의 분포를 이용하는 색채 강도 (Color Intensity) 엔트로피를 제안하고 기존에 제시된 가지 길이 유사성 (Branch Length Similarity) 엔트로피와 함께 사용할 경우 10% 이상의 인식률 향상을 얻을 수 있음을 보인다. 제안한 방법의 신뢰성 있는 성능 평가를 위해 영상 인식에 자주 사용되는 대표적인 특징 추출 방법인 아이겐 이미지, 2D 푸리에 변환, 2D 웨이블릿 변환 방법들을 비교 대상으로 다양한 기계학습을 이용해 성능을 평가한다.

목차

요약
Abstract
I. 서론
Ⅱ. 관련연구
Ⅲ. 나비 영상 데이터
Ⅳ. 특징 추출 방법 - 색채강도 엔트로피
Ⅴ. 실험 및 결과 분석
Ⅵ. 결론
참고문헌

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-310-000924874