메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Theodora Adufu (숙명여자대학교) Jieun Choi (숙명여자대학교) Yoonhee Kim (숙명여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.5
발행연도
2017.5
수록면
439 - 448 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대규모 HPC 과학 응용의 워크로드가 전체 실행시간 동안 다양하게 변화하는 자원 요구사항을 갖게 되면서 특정 시점에 갑자기 요구사항이 증가하는(bursty) 형태가 되고 있다. 그러나 이러한 응용 워크로드를 고려하지 않고, 최대 자원 요구사항만을 반영한 가상 자원의 오버-프로비저닝은 과학 응용의 성능을 보장하지만 다른 응용이 사용할 수 없는 유휴 자원을 늘리는 문제로 남아있다. 본 논문에서는 OS-level 가상화 환경에서 응용의 자원 사용 패턴에 대한 프로파일링 데이터를 기반으로 메모리 자원 재구성 기법을 제안한다. 이는 유휴 상태의 메모리 자원을 신속하게 풀어주어 새로운 응용이 자원을 사용하여 수행할 수 있도록 한다. 본 연구에서는 경량화된 OS-level 가상화 시스템의 하나인 Docker에서 과학 워크플로우 응용을 이용하여 제안하는 알고리즘을 검증하였다. 실험을 통해 과학 응용을 실행하는 동안 컨테이너에 대한 메모리 할당 미세 조정이 전반적인 메모리 자원 활용을 향상시킬 수 있음을 보였다. 또한 응용의 메모리 사용 프로파일 데이터를 기반으로 하는 시뮬레이션 실험을 통해, 제안하는 동적 메모리 할당 기법을 사용하는 경우 대기 작업에 유휴상태의 메모리를 할당하여 전체 대기 작업의 수를 줄이고 시스템 작업 대기 시간이 줄어들었음을 보였다.

목차

요약
Abstract
1. Introduction
2. Related Works
3. Reconfiguration-based allocation Method
4. Experiments
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0