메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minjun Park (Korea Advanced Institute of Science and Technology) Jisung Jang (Agency for Defense Development) Duckjoo Lee (Korea Advanced Institute of Science and Technology)
저널정보
한국항공우주학회 International Journal of Aeronautical and Space Sciences International Journal of Aeronautical and Space Sciences Volume.18 Number.1
발행연도
2017.3
수록면
144 - 153 (10page)
DOI
10.5139/IJASS.2017.18.1.144

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, unmanned aerial vehicles (UAVs) have been developed and studied for various applications, including drone deliveries, broadcasting, scouting, crop dusting, and firefighting. To enable the wide use of UAVs, their exact aeroacoustic characteristics must be assessed. In this study, a noise prediction method for a ducted fan UAV with complicated geometry was developed. In general, calculation efficiency is increased by simulating a ducted fan UAV without the struts that fix the fuselage to the ducts. However, numerical predictions of noise and aerodynamics differ according to whether struts are present. In terms of aerodynamic performance, the total thrust with and without struts is similar owing to the tendency of the thrust of a blade to offset the drag of the struts. However, in aeroacoustic simulations, the strut effect should be considered in order to predict the UAV’s noise because noise from the blades can be changed by the strut effect. Modelling of the strut effect revealed that the dominant tonal noises were closely correlated with the blade passage frequency of the experimental results. Based on the successful detection of noise sources from a ducted fan UAV system, using the proposed noise contribution contour, methods for noise reduction can be suggested by comparing numerical results with measured noise profiles.

목차

Abstract
1. Introduction
2. Noise Prediction Method
3. Experimental Setup and Analysis Conditions
4. Result
5. Conclusions
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-558-002392212