메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서민송 (경상대학교) 유환희 (경상대학교)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제25권 제1호 (통권 제79호)
발행연도
2017.3
수록면
37 - 46 (10page)
DOI
10.7319/kogsis.2017.25.1.037

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 우리나라는 사회적 요인에 의한 재난이 빈번하게 발생하고 있다. 어떤 위기가 도시민들을 위협할지 예측하기 어려워 우려가 높아지고 있다. 따라서 본 연구에서는 Python언어 기반 Tweepy 플러그인을 적용하여 트윗 데이터를 취득하는 프로그램을 개발하고, 자연어 처리 후 R Studio프로그램에서 텍스트 클러스터링 분석과 오피니언 마이닝 분석을 통하여 시민들의 건강에 영향을 미치는 성분이 검출된 ‘옥시’와 시민들에게 많은 공포감을 주었던 ‘묻지마 범죄’와 같은 사회적 재난에 대해 정신적 충격과 불안감을 평가하였다. 텍스트 클러스터링 분석에서 ‘옥시’ 사건은 ‘정부의 대처능력이 세월호 사건과의 연관성’, ‘옥시제품의 철수지시에도 여전한 판매’ 등이 가장 높은 관심도를 보였다. 그리고 ‘묻지마 범죄’ 사건은 ‘스크린 도어 사건, 세월호 사건 등 예측 못하는 사건에 대한 정부의 대응, 대책’, ‘강남역, 부산의 범죄가 여성혐오로 인한 것’ 등이 가장 높은 관심도를 보였다. 또한, 두 범죄를 비교 분석 하였을 때 묻지마 범죄에 대해 시민 감성도 평균 지수가 11.61%p 더 부정적이라는 것을 알 수 있었다.

목차

要旨
Abstract
1. 서론
2. 텍스트 클러스터링과 오피니언 마이닝
3. 트윗 데이터 획득 및 분석
4. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-452-002294794