메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vasily Sachnev (Cathollic University) Sundaram Suresh (Nanyang Technological University) Yong Soo Choi (Sungkyul University)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제17권 제6호
발행연도
2016.12
수록면
565 - 579 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 극한 기계학습을 이용하는 하이브리드 균형 표본 유전자 알고리즘(hSBGA-ELM)을 기반으로 한 새로운 암 아류형 분류자를 제안하였다. 제안 된 암 아류형 분류자는 정확한 암 아류형 분류기 설계를 위해 공개 전체암지도 (Global Cancer Map)로부터 15063개의 유전자 발현 데이터를 사용합니다. 제안된 방법에서는 14가지(유방암, 전립선 암, 폐암, 대장 암, 림프종, 방광, 흑색 종, 자궁, 백혈병, 신장, 췌장, 난소, 중피종 및 CNS)의 암 아류형을 효율적으로 분류합니다. 제안 된 hSBGA-ELM은 유전자 선택 절차 및 암 아류형 분류를 하나의 프레임 워크로 단일화 한다. 제안 된 하이브리드 균형 표본 유전 알고리즘은 GCM 데이터베이스에서 이용 가능한 16,063 개의 유전자로부터 암 아류형 분류를 담당하는 축소된 강인 유전자 셋을 찾는다. 선택/축소된 유전자 세트는 익스트림 기계학습을 이용하여 암 아류형 분류기를 구성하는데 사용된다. 결과적으로, 키기가 축소된 강인 유전자 집합이 제안하는 암 아류형 분류기의 안정된 일반화 성능을 보장하게 한다. 제안 된 hSBGA-ELM은 암에 관여하는 것으로 예측되는 95개의 유전자를 발견하였으며 기존의 암 아류형 분류기와의 비교를 통해 제안 된 방법의 효율을 보여준다.

목차

Abstract
요약
1. Introduction
2. Global Cancer Map (GGM)
3. Proposed hSBGA-ELM for cancer subtype`s classification
4. Experimental results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001982664