메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
석상묵 (Spatial Information Industry Promotion Institute) 권회윤 (Spatial Information Industry Promotion Institute) 송기성 (Spatial Information Industry Promotion Institute) 이하경 (Spatial Information Industry Promotion Institute) 황정래 (Spatial Information Industry Promotion Institute)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제22권 제1호(통권 제154호)
발행연도
2017.1
수록면
41 - 48 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this study, we proposed GIS-based Regional Crime Prevention Index (RCPI) development method designed to support local governments with systematic crime prevention activities. The public interest in safe urban environment is increasing rapidly. The government is putting efforts into crime prevention activities to eliminate the criminal opportunities in advance. CPTED is method to prevent crimes in the city by improving environmental factors that cause crime. It is used by local governments to promote the crime prevention activities centering on the expansion of CCTVs and street lamps and the improvement of street environment. However, most policies were terminated as one-off programs and it is necessary to monitor the effect of such policies on a continuous basis. In order to alleviate issues, this study proposed RCPI as part of crime safety assessment in urban environments. The estimation of RCPI in City A of Gyeonggi-do showed relative differences in 31 districts (dong), indicating that it is also possible to evaluate the crime safety in the local community on the level of the administrative dong, the smallest administrative district in the urban environments. As a crime map, the RCPI will be used effectively as he reference to support the decision making process for local government in the future.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Literature Review
Ⅲ. GIS-based Regional Crime Prevention Index Development Method
Ⅳ. Experimental Implementation
Ⅴ. Conclusion
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002118166