메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임예슬 (건국대학교) 어양담 (건국대학교) 전민철 (건국대학교) 이미희 (건국대학교) 편무욱 (건국대학교)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제24권 제4호
발행연도
2016.12
수록면
67 - 74 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
공간해상도가 높은 드론 영상은 수목 밀도가 높은 지역에서 추출 한계를 갖는 기존 연구의 대안으로 떠오르고 있다. 본 연구에서는 드론 영상으로부터 수목이 우거진 산림 지역 내 수목 개체를 추출하였다. 영상 분할 과정을 거쳐서 추출되는 수목 개체 인식을 위해, DSM(digital surface model), 그리고 R, G, B 밴드 모두를 조합한 경우와 각각을 분리 조합한 경우의 영상 분할 결과를 비교하였다. 또한, 낙엽수림의 수목 우거짐의 변화를 시기별⋅영상별로 실험하였다. 3, 4, 5월 영상 중 숲이 울창한 5월의 경우 현지 측량한 나무를 기준으로 한 수목 개체 추출율은 50%로 나타났고, 수관폭 정확도 분석 결과 RMSE(root mean square error)가 1.5미터 이하로 가장 좋은 결과를 보였다. 실험지역의 추출은 중간 나무, 작은 나무 2가지 크기로 추출하였으며 작은 크기의 나무가 추출 정확도가 더 높았다. 이를 바탕으로 수고 추출을 하고, 수관폭과 흉고직경간의 관계식을 이용하여 흉고직경을 추정한다면, 임목재적 추정 및 산림바이오매스 추정까지 가능할 것으로 보인다.

목차

要旨
Abstract
1. 서론
2. 실험
3. 수목 추출을 위한 영역분할과정
4. 결과 분석
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-452-002005488