메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창환 (동국대학교) 정미나 (Syracuse University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.11
발행연도
2016.11
수록면
1,270 - 1,274 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
로지스틱 회귀분석은 통계학 등의 분야에서 예측을 위한 기술 혹은 변수 간의 상관관계를 설명하기 위하여 오랫동안 사용되어 왔다. 이러한 로지스틱 회귀분석 방법에서 현재 각 속성들은 목적 값에 대하여 동일한 중요도를 가지고 있다. 본 연구에서는 이러한 가중치 계산을 좀더 세분화하여 각 속성의 값이 서로 다른 중요도를 가지는 새로운 학습 방법을 제시한다. 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하기 위하여 점진적 하강법을 이용하여 개발하였다. 본 연구에서 제안된 방법은 다양한 데이터를 이용하여 실험하였고 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 속성값 가중치의 계산
4. 회귀분석 모델의 정규화(regularization)
5. 실험 결과
6. 결론 및 추후 연구 내용
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0