메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최슬비 (국민대학교) 곽기영 (국민대학교) 안현철 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제22권 제3호
발행연도
2016.9
수록면
113 - 127 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
협업 필터링(Collaborative Filtering)은 유용성과 정교성 면에서 가장 성공적인 추천 알고리즘으로 평가받으며 산업계나 학계에서 많이 활용 및 연구되고 있지만, 기본적으로 사용자들이 평가한 점수에만 기반하여 추천결과를 생성하는 한계점이 있다. 이에 본 연구는 사용자가 상품을 구매할 때 자신이 신뢰하는 타인의 추천을 더 적극적으로 수용할 것이라는 점에 착안하여, 사용자의 평점 외에 사용자 간 신뢰관계를 소셜네트워크분석으로 분석한 결과를 추가로 반영하는 추천 알고리즘들을 제안하였다. 구체적으로 본 연구에서는 소셜네트워크분석에서 네트워크 내의 중심적 위치를 나타내는 척도인 내향 및 외향 중심성을 활용하여 사용자 간 유사도를 산출하는 알고리즘들과 사용자 신뢰 네트워크를 탐색하여 추천 대상이 되는 사용자가 직접・간접적으로 신뢰하는 사용자의 평가점수를 보다 높게 반영하는 알고리즘을 제안한 뒤 그 성능을 비교해 보았다. 실제 데이터에 적용하여 분석한 결과, 사용자 신뢰 네트워크의 내향 중심성 지수를 조건 없이 적용한 경우에는 오히려 정확도의 감소만을 야기하는 것으로 나타났고, 일정 임계치 이상의 외향 중심성을 갖는 사용자에 한해 내향 중심성 지수를 고려한 추천 알고리즘은 전통적인 협업 필터링에 비해 약간의 정확도 개선이 이루어짐을 확인할 수 있었다. 아울러, 사용자 신뢰 네트워크를 기반으로 탐색하는 알고리즘이 가장 우수한 성능을 보이는 것을 알 수 있었으며, 전통적인 협업 필터링과 비교해서도 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

목차

1. 서론
2. 이론적 배경
3. 제안 알고리즘
4. 실증분석
5. 결론
참고문헌(References)
Abstract

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001405156