메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제18권 제1호
발행연도
2014.3
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 기존의 Viola-Jones 검출 프레임워크를 개선하여 하나의 특징 당 더 높은 효율을 가지며 검출대상이 아닌 서브 윈도우들을 더 빠르게 제거하는 개선된 학습 알고리즘을 제안한다. 학습의 결과로 생성된 물체 검출기는 서브윈도우를 특정 임계값까지 빠르게 제거하기 때문에 서브윈도우당 계산수가 줄어든다. 기존의 Viola-Jones 물체 검출기와 동일한 프레임워크이므로 검출 성능에는 영향을 주지 않는다. MIT-CMU 테스트 집합에 대해서 서브윈도우당 특징 계산 횟수를 측정하였으며 기존 계산 횟수의 45.5%로 줄어들어 검출 속도가 약 58.5% 향상됨을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001398079