메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오효정 (전북대학교) 안승권 (바른교육) 김용 (전북대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제16권 제8호
발행연도
2016.8
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소셜미디어의 정치사회적인 활용도가 높아짐에 따라 소셜빅데이터 기반 온라인 동향분석 및 모니터링 기술에 대한 수요 역시 급증하고 있다. 본 논문에서는 이러한 요구에 부합, 특히 여론 형성의 악영향을 끼치는 부정적 이슈 탐지를 위해 사회적으로 파장이 큰 이슈 중 공공여론이 부정적으로 형성될 이슈를 ‘리스크’로 정의하고 세부 유형을 분류한다. 리스크 유형 정의를 위해 뉴스 문서집합을 대상으로 전수조사를 실시하였으며, 이슈 분야 즉 도메인별 특성을 파악하여 세부 유형을 정의한다. 또한 뉴스와 같은 공적미디어를 통해 정의된 리스크 유형이 개인화된 소셜 미디어에 나타난 리스크 유형과 어떤 차이가 있는지를 알아보기 위해 교차분석을 수행한다. 조사 결과에 따라 6개의 도메인별로 58개의 세부 유형을 정의하고 기계학습 방법을 통해 자동 분류 학습 모델을 구축한다. 실험 결과를 통해 소셜 미디어에 나타난 사회적 이슈 리스크를 자동으로 탐지, 분류가 가능함을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 사회적 이슈 리스크 유형 정의
Ⅳ. 기계학습 기반 리스크 유형 분류
Ⅴ. 결론 및 향후 연구 계획
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-310-000978587