메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진화 (서울대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.7
발행연도
2016.7
수록면
795 - 800 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지 분류 문제는 인간 수준의 성능을 보이지만 일반적인 인식 문제는 어려운 점들이 남아있다. 실내 환경은 다양한 정보를 담고 있어 정보 처리의 양을 효율적으로 줄일 필요성이 있다. 정보의 양을 효율적으로 줄일 수 있도록 대상 객체의 위치 측정을 위한 변분 추론, 변분 베이지안 등의 방법이 소개되었지만, 모든 경우에 대한 주변(marginal) 확률 분포를 구하기 어렵기 때문에 현실적으로 계산하기 어렵다. 본 연구에서는 공간 변형 네트워크(Spatial Transformer Networks)을 응용하여 능동 시각을 이용한 이미지-텍스트 통합 인지 체계를 제안한다. 이 체계는 주어진 텍스트 정보를 바탕으로 이미지의 일부를 효율적으로 샘플링 하도록 학습한다. 이를 통해 전통적인 방법으로 해결하기 어려운 문제를 상당한 격차로 성능을 향상 시킬 수 있다는 것을 보인다. 제안하는 모델을 통해 샘플링 된 이미지를 정성적으로 분석하여 이 모델이 가지는 특성도 함께 살펴본다.

목차

요약
Abstract
1. 서론
2. 공간 변형 네트워크
3. 다중 모달 위치 측정
4. 실험
5. 결과
6. 고찰
7. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0