메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안기언 (성균관대학교) 김덕우 (한국건설기술연구원) 김영진 (선문대학교) 박철수 (성균관대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 大韓建築學會論文集 計劃系 第32卷 第4號 (通卷 第330號)
발행연도
2016.4
수록면
97 - 105 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
For better energy management of existing buildings, an accurate and fast prediction model is required. For this purpose, this study reports the development of a GP (Gaussian Process) model for an AHU fan of the real high-rise office building. The GP Model is a statistical data driven model, and requires far less inputs and demands less computing time than the whole building simulation tools. In this paper, the following is addressed: 1) the characteristics of the GP model, 2) the development the GP model, and 3)removal of outliers gathered from BEMS data, 4) validation of the GP model. In particular, RANSAC (RANdom SAmple Consensus) was employed for detecting the outliers of the measured data. It is concluded that the GP model accurately predict the fan energy consumption, and can be used for real time optimal control and fault detection of building systems in near future.

목차

Abstract
1. 서론
2. 대상건물 및 동적 시뮬레이션 적용의 한계
3. 가우시안 프로세스 모델
4. 데이터 필터링의 적용
5. RANSAC이 적용된 가우시안 프로세스 모델
6. 결론
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-540-002773602