메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박시영 (광운대학교) 안하은 (광운대학교) 이규철 (광운대학교) 유지상 (광운대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제41권 제3호
발행연도
2016.3
수록면
317 - 327 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
영상에서 의미 있는 특징점(feature point)의 추출은 제안하는 기법의 성능과 직결되는 문제이다. 특히 나무나 사람 등에서의 가려짐 영역(occlusion region), 하늘과 산 등 객체가 아닌 배경에서 추출되는 특징점들은 의미없는 특징점으로 분류되어 정합과 인식 기법의 성능을 저하시키는 원인이 된다. 본 논문에서는 한 장 이상의 멀티 프레임을 이용하여 건물 인식에 필요한 특징점을 분류하여 인식과 정합단계에서 기존의 일반적인 건물 인식 기법의 성능을 향상시키기 위한 새로운 기법을 제안한다. 먼저 SIFT(scale invariant feature transform)를 통해 일차적으로 특징점을 추출한 후 잘못 정합 된 특징점은 제거한다. 가려짐 영역에서의 특징점 분류를 위해서는 RANSAC(random sample consensus)을 적용한다. 분류된 특징점들은 정합 기법을 통해 구하였기 때문에 하나의 특징점은 여러 개의 디스크립터가 존재하고 따라서 이를 통합하는 과정도 제안한다. 실험을 통해 제안하는 기법의 성능이 우수하다는 것을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-567-002792144