메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
이 논문에서는 얼개가 새로운 회귀 신경망을 제안하고, 그 신경망이 어떤 이산 시간 동적 시스템도 동정화 할 수 있음을 보인다. 또한, 제안한 신경망을 써서 유한 상태 자동기계를 부호화, 동정화, 그리고 추출하는 데에 적용하여 그 성능을 살펴본다. 제안한 신경망에 고친 비용함수를 쓰고 혼합 그리디 모의 담금질 방법으로 학습시키면 유한 상태 자동기계를 동정화하는 성능이 일반적으로 다른 기법보다 더 낫다는 것을 모의실험으로 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002529316