메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junho Jeong (Dongguk University) Jung-Sook Kim (Kimpo University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.15 No.4
발행연도
2015.12
수록면
295 - 299 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The developed security scheme for user authentication, which uses both a password and the various devices, is always open by malicious user. In order to solve that problem, a keystroke dynamics is introduced. A person’s keystroke has a unique pattern. That allows the use of keystroke dynamics to authenticate users. However, it has a problem to authenticate users because it has an accuracy problem. And many people use passwords, for which most of them use a simple word such as “password” or numbers such as “1234.” Despite people already perceive that a simple password is not secure enough, they still use simple password because it is easy to use and to remember. And they have to use a secure password that includes special characters such as “#!(*)ˆ”. In this paper, we propose the automatic fortified password generator system which uses special characters and keystroke feature. At first, the keystroke feature is measured while user key in the password. After that, the feature of user’s keystroke is classified. We measure the longest or the shortest interval time as user’s keystroke feature. As that result, it is possible to change a simple password to a secure one simply by adding a special character to it according to the classified feature. This system is effective even when the cyber attacker knows the password.

목차

Abstract
1. Introduction
2. Related Works
3. Proposed Scheme
4. Experiments and Results
5. Conclusions and Future Works
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-002472589