메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Youngjin Hwang (Hanyang University)
저널정보
한국경제연구학회 Korea and the World Economy Korea and the World Economy Vol.16 No.3
발행연도
2015.12
수록면
379 - 417 (39page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study examines the predictive ability of a wide set of variables to predict Korean recessions based on probit models. In doing so, we extend probit-based recession forecasting models in several important and novel ways. First, in addition to commonly used financial variables, we incorporate several macro leading variables as potential predictors of recessions. Second, our forecasts use the algorithm of dynamic model selection/averaging (DMS/DMA), which allows for specific predictors to switch over time in a data-based manner.
Our main findings are as follows. First, in terms of both in-sample fits and out-of-sample forecasts, while financial indicators (such as interest rate spreads) are good predictors over short-horizons (i.e., one or three months ahead), some macro leading variables (such as commodity price index and job opening-to-application ratio) turn out to be useful over longer horizons. Second, forecasting using time-varying predictors (i.e., DMS/DMA models) performs well, beating individual best predictors for each forecast horizon. In addition, we show that forecasting using switching predictors outperforms the models that employ fixed predictors and the composite leading index, in most cases, especially in terms of the mean squared error (MSE). Third, we find strong evidence for predictor switching and illustrate how the performance of the key predictors has evolved over time.

목차

1. INTRODUCTION
2. PROBIT MODEL FOR FORECASTING RECESSIONS
3. RESULTS OF THE INDIVIDUAL PREDICTORS
4. FORECASTING WITH TIME-VARYING PREDICTORS
5. CONCLUDING REMARKS
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-320-002317344