메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제10권 제6호
발행연도
2005.12
수록면
93 - 101 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 퍼지 c-means 알고리즘의 퍼지 멤버십 등식을 신경망과 융합한 서명의 특징정보를 기반으로 하는 자율적인 자기조직화 신경망 모델 이용하여 서명 검증하는 방법을 제안하였다. 기존 온라인 서명인식 방법인 함수적 접근법과 매개변수적 접근법의 한계점을 개선하기 위해 자율적 클러스터 특징정보에 의해 서명 패턴 분류 접근법을 제안했다. 본 논문의 중요한 요소는 서명의 특징 정보를 36개의 전역적 특징 정보 정의와 12개의 지역적 특징 정보를 정의하였고, 이를 기반으로 FE-SONN에 학습하여 서명의 진위여부를 검증하는 검증시스템 구현에 있다. 총 713개의 서명을 가지고 실험하였으며, 원본 서명 155개와 시험용으로 위조 서명 180개와 본인이 작성한 진본 서명 378개를 테스트한 결과 97.67%이상의 검증률을 얻을 수 있었다. 그러나 눈으로 식별이 불가능한 정교한 위조서명은 검증 시스템에서도 진위여부 판단에 어려움이 있다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 서명 검증 인식기의 설계

Ⅲ. 구현 및 실험 결과

Ⅳ. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0