메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제10권 제2호
발행연도
2005.5
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
강건 예측 기법은 오류 자료(outliers)를 제거하고 정상 자료(non-outliers)만으로 모델의 파라미터를 구하는 통계적인 방법으로 잘 알려져 있다. 기존의 문헌에 소개된 많은 강건 예측 알고리즘들이 있으나 컴퓨터 비전 및 영상 처리 분야에서 가장 많이 사용되는 알고리즘은 M-estimators와 LMS(least-median of squares) 방법이다. 이 중 M-estimators는 어파인 모델(affine modeㅣ)의 파라미터 측정에 있어 최적의 방법으로 잘 알려져 있다. 그러나 M-estimators는 통계적인 효율성이 높지만 초기화가 적절히 수행되지 않으면 오류 자료를 제거하는 데 문제점을 가진다. 따라서 본 논문에서는 이런 문제점을 해결하기 위해 연속적인 시그모이드(sigmoid) 가중치 함수를 사용하여 오류 자료와 정상 자료를 효과적으로 분리하면서 어파인 모델의 파라미터를 효과적으로 측정하는 적응적인 M-estimators 강건 예측 알고리즘을 제안한다. 실험에서는 기존의 강건 예측 방법과 제안된 적응적 강건 예측 방법의 성능을 비교 및 분석하여 제안된 방법의 우수함을 보인다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 기존의 강건 예측

Ⅲ. 적응적 M-estimators 강건 예측

Ⅳ. 실험 결과

Ⅴ. 결론

참고문헌

저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0