메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박윤서 (인하대학교) 장임석 (국립환경과학원) 조석연 (인하대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제31권 제5호
발행연도
2015.10
수록면
430 - 436 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Numerical air quality forecasting suffers from the large uncertainties of input data including emissions, boundary conditions, earth surface properties. Data assimilation has been widely used in the field of weather forecasting as a way to reduce the forecasting errors stemming from the uncertainties of input data. The present study aims at evaluating the effect of input data on the air quality forecasting results in Korea when data assimilation was invoked to generate the initial concentrations. The forecasting time was set to 36 hour and the emissions and initial conditions were chosen as tested input parameters. The air quality forecast model for Korea consisting of WRF and CMAQ was implemented for the test and the chosen test period ranged from November 2<SUP>nd</SUP> to December 1<SUP>st</SUP> of 2014. Halving the emission in China reduces the forecasted peak value of PM<SUB>10</SUB> and SO₂ in Seoul as much as 30% and 35% respectively due to the transport from China for the no-data assimilation case. As data assimilation was applied, halving the emissions in China has a negligible effect on air pollutant concentrations including PM<SUB>10</SUB> and SO₂ in Seoul. The emissions in Korea still maintain an effect on the forecasted air pollutant concentrations even after the data assimilation is applied. These emission sensitivity tests along with the initial condition sensitivity tests demonstrated that initial concentrations generated by data assimilation using field observation may minimize propagation of errors due to emission uncertainties in China. And the initial concentrations in China is more important than those in Korea for long-range transported air pollutants such as PM<SUB>10</SUB> and SO₂. And accurate estimation of the emissions in Korea are still necessary for further improvement of air quality forecasting in Korea even after the data assimilation is applied.

목차

Abstract
1. 서론
2. 대기질 예보 시스템
3. 배출량 및 초기조건에 대한 대기질 예보결과의 민감도
4. 결론
References

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-539-002091677