메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
M. Jawad Khan (Pusan National University) Keum-Shik Hong (Pusan National University) Noman Naseer (Pusan National University) M. Raheel Bhutta (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
1,811 - 1,816 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we have investigated the feasibility of detecting drowsiness using hemodynamic brain signals for a passive brain-computer interface (BCI). Functional near-infrared spectroscopy (fNIRS) is used to measure the right dorsolateral-prefrontal brain region in order to investigate the hemodynamic changes corresponding to drowsy and alert states. The data is recorded using five drowsy subjects during a simulated car driving task. The recoded data are converted into oxy- and deoxy-hemoglobin (HBO and HbR) using the modified Beer-Lambert law (MBLL) for feature extraction and classification. Signal mean and signal slope are extracted using the spatio-temporal time windows as features. Linear discriminant analysis (LDA) and support vector machines (SVM) are used for the training and testing of the brain data. The classification accuracy obtained using offline analyses is 74% and 77% respectively. The results show that drowsy and alert states are distinguishable from the right dorsolateral prefrontal brain region. Also, fNIRS modality can be used for drowsiness detection for a passive BCI.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001920028