메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Masahiro Hirao (Okayama University) Toshiaki Aida (Okayama University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
661 - 665 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We approach to the problem of inverse halftoning within the frameworks of Bayesian inference and compressed sensing, which is one of the most effective signal processing methods through sparse representation.
In this paper, we adopt the K-SVD dictionary for the sparse representation of an original image to be inferred, and develop our previous work with the DCT dictionary restricted to a small number of the slowest basis vectors. The K-SVD dictionary is known to have higher efficiency for sparse representation than the DCT one. Therefore, we can expect that it helps us overcome a heavily ill-posed property of the problem.
Numerical analysis confirms the effectiveness of our approach with the K-SVD dictionary, and makes clear the difference between the characteristics of the K-SVD dictionary and those of the restricted DCT one.

목차

Abstract
1. INTRODUCTION
2. DIGITAL HALFTONING
3. BAYESIAN FORMULATION
4. K-SVD DICTIONARY
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS AND DISCUSSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001917509