메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제14권 제7호
발행연도
2009.7
수록면
9 - 15 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특정값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들의 효과를 조사하기 위하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하였으며, 그 결과 우수한 성능을 확인 할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0