메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제14권 제5호
발행연도
2009.5
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시계열의 예측에 대한 문제는 오랫동안 많은 연구자들의 연구의 대상이었으며 예측을 위한 많은 방법이 제안되었다. 본 논문에서는 은닉 마코프 모델(Hidden Markov Model)과 우도(likelihood)를 사용한 유사도 검색을 통하여 향후 시계열 데이터의 운행 방향을 예측하는 방법을 제안한다. 이전에 기록된 시계열 데이터에서 질의 시퀸스(sequence)와 유사한 부분을 검색하고 유사 부분의 서브 시퀸스를 사용하여 시계열을 예측하는 방법이다. 먼저 주어진 질의 시퀸스에 대한 은닉 마코프 모델을 작성한다. 그리고 시계열 데이터에서 순차적으로 일정 길이의 서브 시퀸스를 추출하고 추출된 서브 시퀸스와 작성된 은닉 마코프 모델과의 우도를 계산한다. 시계열 데이터로부터 추출된 서브 시퀸스 중에서 우도가 가장 높은 시퀸스를 유사 시퀸스로 결정하고 결정된 부분 이후의 값을 추출하여 질의 시퀸스 이후의 예측 값을 추정한다. 실험 결과 예측 값과 실제 값이 상당한 유사성을 나타내었다. 제안된 방법의 유효성은 코스피(KOSPI) 종합주가지수를 대상으로 실험하여 검증한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0