메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노태완 (서울대학교) 오하영 (숭실대학교) 노기섭 (공군) 김종권 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제21권 제10호
발행연도
2015.10
수록면
670 - 679 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷의 급 성장과 함께 사용자들은 물건이나 영화, 음악 등을 구매 할 때 여러 가지 추천 사이트를 활용한다. 하지만 이러한 추천 사이트에는 악의적으로 아이템의 평점을 높이거나 낮추려는 악의적인 사용자(Sybil)들이 존재할 수 있으며, 추천시스템에 영향을 끼쳐 일반 사용자들에게 부정확한 결과를 추천할 수 있다. 본 논문에서는 사용자들이 생성하는 평점들을 일반적인 평점과 일반적이지 않은 평점으로 구분하고, 상태 정보를 재정립 및 활용하여 악의적 사용자의 영향력을 최소화 하는 추천 알고리즘을 제안한다. 특히, 현재 추천시스템에서의 문제가 되고 있는 3가지 공격모델의 개별 특성을 고려하여 시빌 유형에 견고한 추천 시스템을 처음으로 제안한다. 제안하는 기법의 성능을 입증하기 위해 실제 데이터를 직접 수집(crawling)하여 성능분석결과 제안하는 기법의 성능이 기존 알고리즘과는 다르게 공격 크기 및 종류에 상관 없이 좋은 성능을 보이는 것을 확인 하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 시스템 모델
4. 실험 및 분석
5. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001972542