메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yihan Li (Beihang University) Jicheng Chen (Inspur) Fan Ni (Beihang University) Yaqian Zhao (Beihang University) Hongwei Wang (Inspur)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.9 No.3
발행연도
2015.9
수록면
142 - 154 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fault localization techniques help locate faults in source codes by exploiting collected test information and have shown promising results. To precisely locate faults, the techniques require a large number of test cases that sufficiently exercise the executable statements together with the label information of each test case as a failure or a success. However, during the process of software development, developers may not have high-coverage test cases to effectively locate faults. With the test case generation techniques, a large number of test cases without expected outputs can be automatically generated. Whereas the execution results for generated test cases need to be inspected by developers, which brings much manual effort and potentially hampers fault-localization effectiveness. To address this problem, this paper presents a method to select a few test cases from a number of test cases without expected outputs for result inspection, and in the meantime selected test cases can still support effective fault localization. The experimental results show that our approach can significantly reduce the number of test cases that need to be inspected by developers and the effectiveness of fault localization techniques is close to that of whole test cases.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. OVERVIEW OF PROPOSED APPROACH
IV. EXPERIMENTAL DESIGN
V. EXPERIMENTAL RESULTS AND ANALYSIS
VI. DISCUSSION
VII. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001972300