메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Quan, He Chun (Yanbian University) Lee, Byung Gul (Jeju National University)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제23권 제3호
발행연도
2015.9
수록면
85 - 93 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper mainly introduces the methods of extracting landslide information using ALOS(Advanced Land Observing Satellite) images and GIS(Geographical Information System) technology. In this study, we classified images using three different methods which are the unsupervised、the supervised and the PCA(Principal Components Analysis) for extracting landslide information based on characteristics of ALOS image. From the image classification results, we found out that the quality of classified image extracted with PCA supervised method was superior than the other images extracted with the other methods. But the accuracy of landslide information extracted from this image classification was still very low as the pixels were very similar between the landslide and safety regions. It means that it is really difficult to distinguish those areas with an image classification method alone because the values of pixels between the landslide and other areas were similar, particularly in a region where the landslide and other areas coexist. To solve this problem, we used the LSM(Landslide Susceptibility Map) created with ArcView software through weighted overlay GIS method in the areas. Finally, the developed LSM was applied to the image classification process using the ALOS images. The accuracy of the extracted landslide information was improved after adopting the PCA and LSM methods. Finally, we found that the landslide region in the study area can be calculated and the accuracy can also be improved with the LSM and PCA image classification methods using GIS tools.

목차

Abstract
1. Introduction
2. The study area
3. Materials and methods
4. LSM and image reclassification
5. Conclusions
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-533-001949010