메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Abdurrahmaan Lotfy (Lafarge Canada) Khandaker M. A. Hossain (Ryerson University) Mohamed Lachemi (Ryerson University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.9 No.2
발행연도
2015.6
수록면
185 - 206 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents statistical models developed to study the influence of key mix design parameters on the properties of lightweight self-consolidating concrete (LWSCC) with expanded shale (ESH) aggregates. Twenty LWSCC mixtures are designed and tested, where responses (properties) are evaluated to analyze influence of mix design parameters and develop the models. Such responses included slump flow diameter, V-funnel flow time, J-ring flow diameter, J-ring height difference, L-box ratio, filling capacity, sieve segregation, unit weight and compressive strength. The developed models are valid for mixes with 0.30?0.40 water-to-binder ratio, high range water reducing admixture of 0.3?1.2 % (by total content of binder) and total binder content of 410?550 kg/㎥. The models are able to identify the influential mix design parameters and their interactions which can be useful to reduce the test protocol needed for proportioning of LWSCCs. Three industrial class ESH?LWSCC mixtures are developed using statistical models and their performance is validated through test results with good agreement. The developed ESH?LWSCC mixtures are able to satisfy the European EFNARC criteria for self-consolidating concrete.

목차

Abstract
1. Introduction
2. Research Program
3. Phase-I Investigation
4. Phase II: Influence of Mix Design Parameters and Development of Statistical Models
5. Phase III: Optimization-Validation of the Statistical Models and Development of Industrial ESH-LWSCC
6. Conclusions
References

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-532-001923653