메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고영찬 (SCAP-Tech Consulting) 박종문 (충북대학교) 신수정 (충북대학교)
저널정보
한국펄프·종이공학회 펄프·종이기술 펄프·종이기술 제47권 제4호
발행연도
2015.8
수록면
177 - 186 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Until Mandelbrot introduced the concept of fractal geometry and fractal dimension in early 1970s, it has been generally considered that the geometry of nature should be too complex and irregular to describe analytically or mathematically. Here fractal dimension indicates a non-integer number such as 0.5, 1.5, or 2.5 instead of only integers used in the traditional Euclidean geometry, i.e., 0 for point, 1 for line, 2 for area, and 3 for volume. Since his pioneering work on fractal geometry, the geometry of nature has been found fractal. Mandelbrot introduced the concept of fractal geometry. For example, fractal geometry has been found in mountains, coastlines, clouds, lightning, earthquakes, turbulence, trees and plants. Even human organs are found to be fractal. This suggests that the fractal geometry should be the law for Nature rather than the exception.
Fractal geometry has a hierarchical structure consisting of the elements having the same shape, but the different sizes from the largest to the smallest. Thus, fractal geometry can be characterized by the similarity and hierarchical structure. A process requires driving energy to proceed. Otherwise, the process would stop. A hierarchical structure is considered ideal to generate such driving force. This explains why natural process or phenomena such as lightning, thunderstorm, earth quakes, and turbulence has fractal geometry. It would not be surprising to find that even the human organs such as the brain, the lung, and the circulatory system have fractal geometry.
Until now, a normal frequency distribution (or Gaussian frequency distribution) has been commonly used to describe frequencies of an object. However, a log-normal frequency distribution has been most frequently found in natural phenomena and chemical processes such as corrosion and coagulation. It can be mathematically shown that if an object has a log-normal frequency distribution, it has fractal geometry. In other words, these two go hand in hand.
Lastly, applying fractal principles is discussed, focusing on pulp and paper industry. The principles should be applicable to characterizing surface roughness, particle size distributions, and formation. They should be also applicable to wet-end chemistry for ideal mixing, felt and fabric design for papermaking process, dewatering, drying, creping, and post-converting such as laminating, embossing, and printing.

목차

ABSTRACT
1. 서론
2. 프랙탈 기하학의 특성
3. 자연과 프랙탈 기하학
4. 펄프ㆍ제지산업에의 프랙탈 원리 응용
5. 결론
Literature Cited

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0