메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한산업공학회 대한산업공학회 춘계공동학술대회 논문집 2015년 대한산업공학회 춘계공동학술대회 논문집
발행연도
2015.4
수록면
505 - 512 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Dimension reduction is an important component of a machine learning area. It transforms input spaces into the reduced spaces with smaller dimensionality. Goal of this paper is to analysis the effect of using various dimension reduction techniques for predicting multivariate chaotic time series. Input space of multivariate chaotic time series which is reconstructed state space usually brings more information of an original strange attractor than one of univariate chaotic time series. When the multivariate chaotic time series are used, however, it exhibits relatively high dimension on time delay coordinates vector which induces curse of dimensionality, statistical dependency and redundancy among features of input spaces which disturb the ability of machine learning techniques. To solve this problem, we apply dimension reduction techniques. After that, least squares support vector regression (LSSVR) of machine learning techniques is used to predict future value of chaotic time series. Our experiment consists of delayed Lorenz series.

목차

Abstract
1. Introduction
2. Chaotic time series
3. Dimension reduction
4. LSSVR (Least squares support vector regression)
5. Experiment
6. Conclusion
7. Acknowledgements
8. Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-001306947