메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min Hwang (Chonbuk National University) Yeong-Han Chun (Hongik University) Jung-Wook Park (Yonsei University) Yong Cheol Kang (Chonbuk National University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.10 No.3
발행연도
2015.5
수록면
1,363 - 1,369 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.

목차

Abstract
1. Introduction
2. Dynamic Droop-based Inertial Control for a WPP
3. Model system
4. Case studies
5. Conclusion
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-001331579