메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SUNBU KANG (KOREA AIR FORCE ACADEMY) TAEKKEUN KIM (NH INVESTMENT & SECURITIES) YONGHOON KWON (POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.19 No.1
발행연도
2015.3
수록면
1 - 21 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly.
By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable.
We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, r ≤ d, long-time or short-time maturity T.

목차

ABSTRACT
1. INTRODUCTION
2. THE IMPLICIT SYSTEM FOR OPTION PRICE AND FREE BOUNDARY
3. NUMERICAL ALGORITHMS
4. NUMERICAL EXPERIMENTS
5. CONCLUSIONS
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-410-001252696