메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hanmoi Sim (Chung-Ang University) Chounghun Lee (Chung-Ang University) Wonhyung Lee (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.2 No.1
발행연도
2015.2
수록면
52 - 57 (6page)
DOI
10.15323/techart.2015.02.2.1.52

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we offer a new UI design for a Chinese input method for smart devices during gameplay. Currently, the well-known conventional stroke-based Chinese input method, using only five basic stroke types, could achieve a low learning curve and small keypad implementation. We designed the proposed UI based on this stroke-based input method, compensating for the problem that the input speed is limited by offering a much higher relative input speed. Inputs by pressing or typing keys are replaced with sliding in the proposed method. To evaluate the proposal, we designed and implemented the method with Unity3D. To improve the input speed of the stroke-based method, slide-direction arrows are used, and the selected character is intuitively shown to the user in real-time. The four tones (四?) in Chinese pronunciation are also used to improve the input speed with this input method. In addition, to evaluate the new input method’s UI, we conducted experiments on a smart device, comparing it with four standard Chinese input methods. By inputting 20 random Chinese characters and two-letter Chinese words with these methods, and comparing the input speed, click times, and typos, we demonstrate that there are considerable advantages to the new UI, such that it outperforms other UIs for smart-device gameplay.

목차

Abstract
1. Introduction
2. Method and Scope of Study
3. Related Studies
4. Specific Requirements
5. Analysis and Evaluation of the Experimental Results
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-688-001122071