메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성진 (고려대학교) 명노해 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제41권 제1호
발행연도
2015.2
수록면
43 - 49 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The aim of this study was to model unusual association with declarative knowledge by positive affect using ACT-R cognitive architecture. Existing research related with cognitive modeling tends to pay a lot of attention to strong and negative cognitive moderator. Mild positive affect, however, has far-reaching effects on problem solving and decision making. Typically, subjects with positive affect were more likely to respond to unusual associates in a word association task than subjects with neutral affect. In this study, a cognitive model using ACT-R cognitive architecture was developed to show the effect of positive affect on the cognitive organization related with memory. First, we organized the memory structure of stimulus word ‘palm’ based on published results in a word association task. Then, we decreased an ACT-R parameter that reflects the amount of weighting given to the dissimilarity between the stimulus word and the associate word to represent reorganized memory structure of the model by positive affect. As a result, no significant associate probability difference between model prediction and existing empirical data was found. The ACT-R cognitive architecture could be used to model the effect of positive affect on the unusual association by decreasing (manipulating) the weight of the dissimilarity. This study is useful in conducting model-based evaluation of the effects of positive affect in complex tasks involving memory, such as creative problem solving.

목차

1. 서론
2. 관련 연구
3. ACT-R 인지모델 수립
4. 결과
5. 토의
6. 결론
참고문헌

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-001083125