메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Trung Dung Do (Inha University) Thi Ly Vu (Inha University) Van Huan Nguyen (Inha University) Hakil Kim (Inha University) Chongho Lee (Inha University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.8 No.4
발행연도
2014.12
수록면
207 - 214 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In pedestrian detection applications, one of the most popular frameworks that has received extensive attention in recent years is widely known as a ‘Hough forest’ (HF). To improve the accuracy of detection, this paper proposes a novel split function to exploit the statistical information of the training set stored in each node during the construction of the forest. The proposed split function makes the trees in the forest more robust to noise and illumination changes. Moreover, the errors of each stage in the training forest are minimized using a global loss function to support trees to track harder training samples. After having the forest trained, the standard HF detector follows up to search for and localize instances in the image. Experimental results showed that the detection performance of the proposed framework was improved significantly with respect to the standard HF and alternating decision forest (ADF) in some public datasets.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. NOVEL SPLIT FUNCTION AND ERROR OPTIMIZATION FOR HF
Ⅲ. EXPERIMENTAL RESULTS
Ⅳ. CONCLUSIONS AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001106219