메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Worawit Somha (Fukuoka Institute of Technology) Hiroyuki Yamauchi (Fukuoka Institute of Technology) Ma Yuyu (Fukuoka Institute of Technology)
저널정보
대한전자공학회 대한전자공학회 ISOCC ISOCC 2013 Conference
발행연도
2013.11
수록면
188 - 191 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper proposes for the first time a blind deconvolution technique for extracting the unknown two variation factors of the Random Telegraph Noise (RTN) and the truncated Random Dopant Fluctuation (RDF) solely from the given target for SRAM margin variations. Unlike the non-blind deconvolution, the blind deconvolution has to extract the both of the two unknown factors of RTN and truncated RDF simultaneously, that can be sort of ill-posed problem. The proposed algorithm features a sequentially-dual iteration loop and an adaptively segmented forward-problem based blind deconvolution (DIAS-BDCV) process. This allows a free of convergence error in the optimization process. This effectiveness has been demonstrated for the first time with applying to a real SRAM design analysis. It has been shown that the proposed DIAS-BDCV technique allows: (1) a free of convergence-error and local-minimum-error in blind deconvolution even if the total number of parameters to be sought in the optimization problem exceeds 20, and (2) a low enough blind deconvolution errors of the RTN and RDF comparable to the level (< 10<SUP>-13</SUP>) of the non-blind one.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Proposed Adaptively Iterative and Segmented Blind-Deconvolution Algorithm
Ⅲ. Seeking The Best Parameter Set in Outer Loop
Ⅳ. Comparisons of Errors between Blind and Non-blind Deconvolution
Ⅵ. Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001048796