메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주희 (호서대학교) 장진우 (한양대학교) 이용준 (비이엘테크놀로지) 최준혁 (두올테크) 이상환 (한양대학교)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제8권 제6호
발행연도
2014.12
수록면
343 - 348 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Heat transfers and related phenomena can be described by the second order partial differential equation, which cannot generally be solved except a simple domain. To make matters worse, the solution significantly dependents on the boundary conditions. The equations with analytical methods are solvable for only a limited number of cases. The known solutions are extremely useful in helping to understand heat transfer phenomena, but they rarely can be applied in engineering or design, because these solutions are not sufficiently practical. The engineer and designer have generally been forced to use numerical methods instead. To obtain an numerical solution, a discretization method, which approximates the differential equations by a system of algebraic equations is used. The approximations are applied to small domains in space and time so the numerical solution provides results at discrete locations in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resource are required. The balance between the accuracy and difficulty of the numerical methods is critical. The final linear equations by discretization are solved with matrix solver, which takes the most of the computation time. To reduce the computation time, the effective method for matrix solver is required. This study provides an overview of discretization, and matrix solver for the 3-dimensional numerical heat transfer.

목차

Abstract
1. 서론
2. 전산응용 전열해석
3. 결과 및 토의
4. 결론
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-546-000988061