메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2014
발행연도
2014.10
수록면
1,466 - 1,470 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper calculation and formation of aggregational values being the main elements of operative analysis of multidimensional data, in the form of hypercube and the development of effective correlation structure to the data during the process of the analytical analysis are considered. In the course of writing, basic concepts of multidimensional data model and internal structure are given. Measurements used for the implementation of hypercube and for the description of dimension elements the secuence of sets theory is applied. Pre-calculation of all aggregation values for quick operative analysis and in order to carry out the effective correlation to the values received in the result of calculation, multidimensional indexing are developed. In this structure, in accordance with the primary keys intersection of dimensional elements multidimensional indexing structure having been formed and pre-aggregation is made for the initial quantitative values through the formed multidimensional indexing structure. Pre-aggregation values in separate structure is stored and according to multidimensional indexing the pointer is installed to the aggregational value address. This means one multidimensional index matched with one value. After the termination of pre-aggregational values calculation, calculations of aggregational values that are solved in all the intersections of the values are considered. In the end of paper conclusion and literature are given.

목차

Abstract
1. INTRODUCTION
2. THE MULTIDIMENSIONAL DATA MODEL
3. DEVELOPMENT OF THE STRUCTURE FOR FORMATION AGGREGATIONAL VALUES OF HYPERCUBE
4. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0