메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Byeong-Min Jeong (Korea Aerospace Industry) Jung-Su Ha (KAIST) Han-Lim Choi (KAIST)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2014
발행연도
2014.10
수록면
831 - 834 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a methodology to generate task flow for conducting a surveillance mission using multiple UAVs, when the goal is to persistently maintain the uncertainty level of surveillance regions as low as possible. The mission planning problem is formulated as a Markov decision process (MDP), which is a infinite-horizon discrete stochastic optimal control formulation and often leads to a periodic task flows to be implemented in a persistent manner. The method specifically focuses on reducing the size of decision space without losing key feature of the problem in order to mitigate the curse of dimensionality of MDP; integrating a task allocator to identify admissible actions is demonstrate to effectively reduce the decision space. Numerical simulations verify the applicability of the proposed decision scheme.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. PROBLEM FORMULATION
4. SIMULATION RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0