메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hirokazu Madokoro (Akita Prefectural University) Kantarou Kakuta (Akita Prefectural University) Ryo Fujisawa (Akita Prefectural University) Nobuhiro Shimoi (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University) Li Xu (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2014
발행연도
2014.10
수록면
540 - 545 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a bed-leaving detection method using Elman-type Counter Propagation Networks (ECPNs), a novel machine-learning-based method used for time-series signals. In our earlier study, we used CPNs, a form of supervised model of Self-Organizing Maps (SOMs), to produce category maps to learn relations among input and teaching signals. For this study, we inserted a feedback loop as the second Grossberg layer for learning time-series features. Moreover, we developed an original caster-stand sensor using piezoelectric films to measure weight changes of a subject on a bed to be loaded through bed legs. The features of our sensor are that it obviates a power supply for operations and that it can be installed on existing beds. We evaluated our sensor system by examining 10 people in an environment representing a clinical site. The mean recognition accuracy for seven behavior patterns is 71.1%. Furthermore, the recognition accuracy for three behavior patterns of sleeping, sitting, and leaving the bed is 83.6% Falsely recognized patterns remained inside of respective categories of sleeping and sitting. We infer that this system is applicable to an actual environment as a novel sensor system requiring no restraint of patients.

목차

Abstract
1. INTRODUCTION
2. SENSOR SYSTEM
3. RECOGNITION METHODS
4. EXPERIMENTAL RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0